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ABSTRACT: We developed a flexible screening procedure for the selection of multifunctional bacterial agro-
inoculant strains, with lignocellulose material degradation ability. Initial screening was done to select the 
bacteria isolates from ensilaged grass / legumes, able to growth on minimal media, with 
(carboxymethyl)cellulose, xylan or phytate as carbon source. On these isolates we tested the antagonism 
toward plant pathogens, ability to produce siderophores and compatibility with lactic acid bacteria. We 
selected a strain, SZE102A, able to growth on plant residues, with a highly antagonistic activity toward plant 
pathogens and compatible with lactic acid bacteria. We identified this strain as being Bacillus licheniformis, 
by a polyphasic taxonomic approach. 
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INTRODUCTION 

Bacterial inoculants are used in agriculture mainly 

for plant growth promoting applications (Bashan, 1998, 

Berg, 2009, Laslo et al., 2012) and for an improved 

fermentation and aerobic stability of silage grass and/or 

legumes. (Filya et al., 2000, Weinberg & Muck, 1996, 

Wilkinson & Davies, 2013).  Bacterial inoculants 

strains, able to colonize and degrade lignocellulose 

material, could be useful for both applications, as 

treatment of plant residues, i.e. on conservation 

farming systems, and as inoculation of cutted grass and 

/or legumes, baled at high moisture.  

Such applications are of particular interest for 

sustainable agriculture practices on wetland areas. 

High residues / conservation agriculture systems are 

highly recommended for wetland area (Faulkner et al., 

2011, Hobbs et al., 2008, Scherr & McNeely, 2008), 

mainly due to reduced erosion and nutrient leakage, 

resulted from low-tillage interventions. However, such 

high residues systems present several disadvantages. 

High residues covering the soil promote survival of soil 

born plant pathogens (Bockus & Shroyer, 1998), 

including mycotoxigenic fungi (Beyer et al., 2006, 

Dill-Macky & Jones, 2000, Pereyra & Dill-Macky, 

2008). Soil coverage decreases soil temperature 

(Turmel et al., 2015, Page et al., 2013, Baker et al., 

2007). Higher carbon inputs into soil reduce nitrogen 

availability (Geisseler et al., 2010, Turmel et al., 2015). 

Both soil decreased temperature and reduced nitrogen 

availability delay the development of the cultivated 

plants on the early stages (Kravchenko & Thelen, 

2007). Plant residues treatment, with bacterial 

inoculants able to colonize and accelerated the 

decomposition of lignocellulose material, antagonist 

against plant pathogens and with plant growth 

promoting characteristics, are one of the solutions for 

counteracting the negative effects of high residues 

covering the soil, on conservation farming (Raut et al., 

2015, Sicuia et al., 2012a). 

Nutritive values of grass and/or legumes from 

wetland are increased by frequent cutting (Cop et al., 

2009). However, in such wet area, sun drying grass 

and/or legumes is more difficult, silage on plastic 

wrapped bale being an attractive alternative. For such 

approach of producing bale silage, bacterial inoculants, 

able to initiate the lignocellulose material 

decomposition, for an enhanced fermentation, and 

displaying both anaerobic / aerobic metabolism, are 

needed. 

Our aim on this work was to develop and to use a 

flexible screening procedure for the selection of 

bacterial inoculants strains, able to growth on 

lignocellulose material and useful for both mentioned 

agricultural applications, treatment of plant residues 

coverage on conservation farming systems and 

inoculation of wrapped silage bale. We will further 

detail this procedure, presenting and discussing the 

results obtained through its application. 

 

MATERIALS AND METHODS: 
Microorganism and culture media. We used 

different type of silage (corn silage, grass silage, alfalfa 

silage) as source of bacteria with lignocellulose 

degradation ability. Isolation was done on minimal 

media supplemented with components usually found 

on plant cell wall / lignocellulose material – cellulose, 

xylan, phytate. We used M63 minimal medium, 

containing the following ingredients in 1 liters: 

K2HPO4 61.5 mM; KH2PO4 38.5 mM; (NH4)2SO4 15.1 

mM, oligo-elements (0.5 ml of 1 mg/ml FeSO4 in 0.01 

M HCl; 1 ml of 1M MgSO4 solution), 1 mL of 1 mg/ml 

thiamine solution, and 5 mL of SPV-4 trace elements
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solution (Kung et al., 1991). All the used reagents were 

provided by Sigma-Aldrich (St. Louis, MO, USA). Into 

this minimal media we introduced, as carbon source 

and energy, 0.5 g/l of one of the followings: (i) 

microcrystalline cellulose (d50 Merck Millipore, 

Darmstadt, Germany, 10-30 μm particle size), (ii) 

carboxymethlycellulose sodium salt (Sigma-Aldrich, 

50-200 cP viscosity; 90 kDa), (iii) xylan, (Sigma-

Aldrich, from beechwood, >90% xylose residues) and 

phytate, inositol hexakisphosphate disodium salt 

hydrate (Sigma-Aldrich, from rice). Prior autoclaving, 

we adjusted the pH to 7.0 using 5 M NaOH. We added 

18 g of agar (Merck-Millipore) per liter to prepare the 

agar plates, which we used for isolation of pure culture. 

We used non-inoculated agar plates as control. 

Taxonomical identification of bacterial strains. We 

made an identification of bacterial isolates able to use 

components usually found on plant cell wall / 

lignocellulose material (cellulose, xylan, phytate) as 

sole source of carbon and energy using a polyphasic 

approach (Vandamme et al., 1996, Tilak et al., 2005). 

We tested the ability to used various substrates by 

using Api
®
 strip (BioMeriueux, Marcy-l'Étoile, 

France). We confirm the initial taxonomical 

identification with 16S rRNA gene-based sequence 

analysis.  We used BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, USA) for 

determination of the nucleotide sequence of obtained 

PCR products. Sequences were analyzed with ABI 310 

Genetic Analyzer (Applied Biosystems, USA).  We 

compared the resulted sequences with those existing on 

NCBI Gene Bank by using BLAST (Basic Local 

Alignment Search Tool) Programme. 

Assay of the antagonistic activity toward plant 

pathogens. We used the confrontation assay method, 

on complex agar medium, containing peptone 10 g, D-

dextrose 40 g, yeast extract 10 g, agar 18 g, for 

determination of the antagonistic activity (Laslo et al., 

2012). The plant pathogens strains which we used 

were: Botrytis aclada / B. allii DSM876, Rhizoctonia 

solanii DSM 22845, Tiarosporella phaseolina / 

Macrophomina phaseolina DSM 62744, Fusarium 

graminearum DSM4527, Verticillium dahliae DSM 

63083, Phytophthora sojae ATCC 16708, Pythium 

ultimum DSM 62987, Sclerotinia sclerotiorum DSM 

1946. We maintained these fungal plant pathogens on 

Czapek-Dox agar, containing sucrose 30 g, NaNO3 3 g, 

K2HPO4 1 g, KCl 0.5 g, MgSO4.7H2O 0.5 g, 

FeSO4.7H2O 0.01 g, agar 15 g, in 1000 ml distilled 

water (Atlas, 2010). Tested bacterial isolated were 

grown overnight at 28°C in King’s B broth. We spread 

0.1 ml of each isolate liquid culture on complex agar 

plates, using a Drigalski inoculation loop. We 

axenically placed in the middle of agar plates, streaked 

with different bacterial isolates, agar disc of each tested 

fungal plant pathogens, with a diameter of 7 mm. We 

incubated the agar plates at 28°C and we measured the 

diameter change of the fungal mycelium after 7 days. 

We made control plate, wherein each fungal plant 

pathogen was grown on complex media agar plate 

without spread bacterial isolates. We calculated the 

inhibitory effect (IR%) of the bacterial isolates using 

the following formula: 

B

BC
IR


100%  

where C is the diameter of the control fungal plant 

pathogen mycelium, grown in absence of tested 

bacterial isolates and B the diameter of the fungal plant 

pathogen mycelium grown in the presence of the 

bacterial isolates. 

Determination of the siderophores production. We 

used a variant of the Chrome Azurol S agar method 

(Oldal et al., 2002), based on the competition for ferric 

(Fe
3+

) ions complexation between the indicator dye, 

Chrome Azurol S (CAS), and siderophore produced by 

the tested bacterial isolate. Briefly the composition of 

the used CAS agar, per liter, was:  6 g piperazine, 0.6 g 

NaOH, 15 g proteose-peptone, 15 g MgSO4.7 H2O, 15 

g K2HPO4, 10 ml glycerol, 20 g agar, 900 ml pure 

water, 60.5 mg CAS dissolved in 50 ml pure water, 10 

mg FeCl3.6 H2O and 72.9 mg hexadecyl-trimethyl-

ammonium bromide (HDTMA), dissolved in 50 ml 

pure water. Bacterial suspensions were prepared in 

saline (NaCl 9 g/L), and turbidity was set to 0.3 

(OD600). Bacterial suspensions were injected on the 

middle of CAS agar plate, using 5 µl of bacterial 

suspensions. We worked on three repetitions for each 

isolate. The plates were incubated at 28°C for 48 hours. 

We measured the diameter of the yellow zone, resulted 

from formation of siderophores - ferric complexes. 

Determination of the compatibility with lactic acid 

bacteria. We used the dual confrontation assay. We 

grew bacterial isolates and lactic acid bacteria on de 

Man, Rogosa and Sharpe (MRS) agar (Oxoid), on 

anaerobic conditions. We grew the bacterial isolated 

overnight at 28°C in nutrient broth and lactic acid 

bacteria on MRS broth. We inoculated a streak of 0.1 

ml of each isolate liquid culture on MRS agar plates, 

on 1/3 from the middle of the agar plate and on the 

opposite site we inoculated the tested lactic acid 

bacteria. We incubated anaerobically the plates on 

30°C for 2 days and then we evaluated the growth of 

lactic acid bacteria confronted with the tested bacterial 

isolates. 

Evaluation of the growth of lactic acid bacterial 

strain on plant material. We tested the growth of 

bacterial strain which was proved to be the most 

compatible with lactic acid bacteria on plant material – 

grass (Lolium perene) and alfalfa (Medicago sativa). 

We used BHM liquid minimal media, with the 

following composition: 1 g/l NH4NO3, 0.02 g/l 

KH2PO4, 0.2 g/l MgSO4·7H2O, 0.2 g/l CaCl2, 0.05 g 

FeCl3·6H2O (Singh et al., 2013). To this minimal 

medium we added plant biomass (grass or alfalfa), in 

an amount of 23.5 g/l. The tested bacterial strain was 

grown overnight on Nutrient broth, at 28°C for 24 

hours. We used 0.4 ml bacterial suspension (OD600= 1) 

for inoculation of 20 ml BHM medium with plant 

biomass, aseptically distributed into a 100 ml conical. 

We incubated the inoculated media at 28°C for 48 

hours, on an incubated rotary shaker, at 145 rpm. We 

sampled 1 ml of medium, after 12, 24, 36 and 48 hours, 

and wherein this samples we determined the number of 

colony-forming units, after a series of decimal 

dilutions, inoculation on Nutrient agar, incubation at 
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28°C for 24 hours, and enumeration of the resulted 

colonies.  

Statistical analysis. We performed all the 

experiments in triplicate. Colony forming units, cfu, 

per ml, were log-transformed, with the calculation of 

standard errors. Statistical relevance was established by 

ANOVA and linear mixed model (Bolker et al., 2009). 

The Excel software (Office 365 - Excel 2016, 

Microsoft, Redmont, WA, USA) was used to make 

calculations and to draw figures. 

 

RESULTS AND DISCUSSION: 
We selected several bacterial isolates able to 

growth on minimal media wherein the sole carbon and 

energy sources is represented by the components 

usually found on plant cell wall / lignocellulose 

material – cellulose, xylan, phytate. We characterized 

them, including in term of purity. In Table 1 we present 

these strains and their taxonomical identity. The 

majority of these strains are Gram-positive spore 

forming bacteria, with ability to growth both 

aerobically and anaerobically, by nitrate / nitrite 

respiration or by fermentation (Nakano & Zuber, 

1998). One strain was identified as belonging to 

Weissella genera (W. paramesenteroides), a Gram-

positive, catalase-negative, non-endospore forming 

bacteria, with interesting biotechnological application 

as probiotics, recently reviewed (Fusco et al., 2015). 
 

Table 1.  

Bacterial strains able to grown on minimal media wherein the sole carbon and energy sources is represented by the 
components usually presented in lignocellulose material 

Bacterial strain Origin Used carbon sources 

Bacillus aryabhattai (KF101*) Corn silage Phytate 

Bacillus subtilis subsp. subtilis (SZX102) Grass silage Xylan 

Bacillus simplex (LE101B) Alfalfa silage Cellulose 

Bacillus subtilis subsp. inaquosorum (SZF101B2) Grass silage Phytate 

Bacillus subtilis subsp. inaquosorum (SZX102A*) Grass silage Xylan 

Bacillus subtilis subsp. inaquosorum (SZE102B*) Grass silage Cellulose 

Bacillus subtilis subsp. inaquosorum (SZC102B*) Grass silage Carboxymethlycellulose 

Bacillus licheniformis (SZF102) Grass silage Phytate 

Bacillus licheniformis (SZX101B) Grass silage Xylan 

Bacillus licheniformis (SZE102A*) Grass silage Cellulose 

Bacillus licheniformis (SZC101A) Grass silage Carboxymethylcellulose 

Paenibacillus pabuli (KX101*) Corn silage Xylan 

Paenibacillus amylolyticus (KC102) Corn silage Carboxymethylcellulose 

Weissella paramesenteroides (LC101B*) Alfalfa silage Carboxymethylcellulose 

 

On these strains we determined their antagonistic activity towards 8 fungal plant pathogens and their capacity to 

produce siderophores – Figure 1. 

 

 
 
Fig. 1. Examples of determinations of the antagonistic activity against fungal plant pathogens and of the capacity to 
produce siderophores on the selected strains. a – control, development of F. graminearum DSM4527 on complex media; 
c - development of F. graminearum DSM4527 on media wherein strain Bacillus licheniformis SZF102 was spread; c – 
siderophores production by Paenibacillus amylolyticus KC102. 
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We made the antagonism tests against fungal plant 

pathogens of the bacterial strains in triplicates. We 

calculated the mean values of the inhibitory effect as 

average of the values obtained on each repetition. The 

resulted mean values of inhibitory effect values are 

represented in Figure 2.  

Bacterial strain B. aryabhattai KF101* shown an 

inhibitory effect on tested fungal pathogens, with the 

lower recorded value for T. phaseolina (13.97%), while 

the maximum value has been reached in the case of 

oomycete species P. sojae (100%). Till now strains 

belonging to B. aryabhattai species were demonstrated 

to promote plant growth into a microcosmos soil (Lee 

et al., 2012) or to enhance zinc bioavailability for plant 

(Ramesh et al., 2014). According to our information, 

this is the first signalization of antagonistic properties 

for a strain from this Bacillus species. 

Strains of B. licheniformis presented an inhibitory 

effect of 100% in the case of species of fungal plant 

pathogens B. dahliae, B. aclada (B. alli) and P. sojae, 

showing values of inhibitory effects between 55.46% - 

95.99% for the other five other species of fungal plant 

pathogens. Antagonism of B. licheniformis species 

against fungal plant pathogens is well known (Lee et 

al., 2006, Tendulkar et al., 2007, Slimene et al., 2015).  

The lower inhibitory effect, of 7.69%, was registered 

for the strain of B. simplex LE101B, against S. 

sclerotinum. Although this LE101B bacterial strain 

showed antagonistic effects on all species of fungi 

tested, the values of the inhibitory effect were lower 

than for the others tested bacterial strains. Plant 

beneficial B. simplex strains, including due to their 

antagonism against plant pathogens, were 

demonstrated to produce mainly volatile compounds 

(Gutiérrez-Luna et al., 2010, Santoyo et al., 2012, 

Campos et al., 2010). Our experimental conditions, of 

confrontation on complex media, do not address well 

the active volatile producing fungi. For such strains, 

the double sandwich confrontation method (Raut et al., 

2014) is more suitable. 

Bacterial Strains of B. subtilis subsp. inaquosorum 

proved to be the most effective, form all 14 bacterial 

strains tested for the antagonistic activity. The strain B. 

subtilis subsp. inaquosorum SZE102B* presented the 

inhibitory effect of 100% for 6 fungal plant pathogens. 

B. subtilis subsp. inaquosorum SZC102B* and 

SZF101B2 demonstrated a 100% inhibitory effects for 

5 fungal plant pathogen and B. subtilis subsp. 

inaquosorum SZX102A* strain totally inhibited 4 

fungi. All tested strains of B. subtilis subsp. 

inaquosorum proved to be 100% effective against T. 

phaseolina, V. dahliae B. aclada (B. alli) and P. sojae. 

The strain B. subtilis subsp. subtilis SZX102 present 

100% inhibitory effect for 5 fungal plant pathogens, T. 

phaseolina, V. dahliae, B. aclada (B. alli), S. 

sclerotiorum, P. sojae, 95.08% inhibitory effect for R. 

solani, 81.55% for F. graminearum and 78.2% for P. 

ultimum. Strains from Bacillus subtilis group are well 

known to be very actives as plant pathogens antagonist 

(Morikawa, 2006, Nagorska et al., 2007, Ongena & 

Jacques, 2008, Sicuia et al., 2015). However, our 

results underline the complexity of this B. subtilis 

group, wherein strains of different subspecies shown 

different biological activities. 

Strains included into Paenibacillus genera have 

been shown to be weaker competitors than strain which 

was included into B. subtilis group, especially of those 

included into subsp. inaquosorum. Strain P. 

amylolyticus KC102 proved to be effective at 100% for 

3 of the fungal plant pathogens: V. dahliae, B. aclada 

(B. alli) and S. sclerotiorum. In the case of the other 

five plant pathogen strains, the inhibitory effect ranged 

between 60.42% - 77.99%. Strain P. pabuli KX101* 

proved to be 100% effective on 4 plant pathogen 

strains: V. dahliae, B. aclada (B. alli), S. sclerotiorum 

and P. sojae. In the case of the other 4 plant pathogen 

strains the inhibitory effect ranged between 55.25%-

87.92%. Strains from Paenibacillus genera are well 

known for their beneficial effects on cultivated plants – 

especially those from P. polymyxa  (Mousa & Raizada, 

2015). P. amylolyticus strains were proved to be active 

against Fusarium oxysporum f. sp. radicis-lycopersici 

in hydroponics (stonewool) substrate (Validov et al., 

2007). P. pabuli strains were reported to be active 

against several plant pathogens (Kobayashi et al., 

2015), including Phytophthora parasitica, in an in vivo 

assay (Wang et al., 2012). Strains included into P. 

pabuli species were reported to produce several 

extracellular enzymes active on polysaccharides, 

including cellulases (Juarez-Jimenez et al., 2008, de 

Castro et al., 2011, Archna et al., 2015). 

Interesting, we found that a strain from a specie 

included into lactic acid bacteria group, W. 

paramesenteroides LC101B*, proved significant 

inhibitory effect against plant pathogen. It exhibited an 

inhibitory effect of 100% against 3 plant pathogens: V. 

dahliae, B. aclada (B. alli) and S. sclerotiorum. In the 

case of the other tested five plant pathogens the 

inhibitory effects ranged between 72.09-93.14%. W. 

paramesenteroides was isolated from fermented 

sausages and differentiated from Leuconostoc genera 

more than 20 years ago (Collins et al., 1993). Presence 

of bacterial populations taxonomically classified a W. 

paramesenteroides was described on various plant 

materials (Sade et al., 2016, Chen et al., 2012, Fusco et 

al., 2015). Despite the fact that W. paramesenteroides 

was reported to produce a bacteriocin, weissellin A 

(Papagianni & Papamichael, 2011), antagonism toward 

plant pathogen of strains from such a lactic acid 

bacteria species was not yet described, according to our 

knowledge.  
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Fig. 2. The antagonistic activity toward fungal plant pathogens of the bacterial strains with lignocellulose material 

degradation ability 

All the tested strains, initially isolated on minimal 

media with lignocellulose components, cellulose, 

xylan, phytate, as sole carbon and energy sources, 

shown a significant antagonism toward tested fungal 

plant pathogens. This is not unusual, a direct 

relationship being already demonstrated between the 

(hemi)cellulolytic activity and antagonism toward plant 

pathogens (Budi et al., 2000, Krechel et al., 2002, 

Pastor et al., 2012).  

Such characteristics, lignocellulose degradation and 

antagonism toward plant pathogens, were demonstrated 

to be beneficial to cultivated plants. Wheat straw and 

cellulolytic microorganism application are enhancing 

nodulation efficiency and growth of fenugreek (Abd-

Alla & Omar, 1998). Cellulolytic activity induced into 

soil by inoculating microorganisms was directly 

correlated with the suppression of seedling blight of 

barley caused by F. culmorum (Rasmussen et al., 

2002). Compost inoculation with such 

(ligno)cellulolytic and antagonistic microorganisms 

improves its suppressiveness toward soil born disease 

(Hadar & Papadopoulou, 2012, Kausar et al., 2014). 

We evaluated an additional characteristic beneficial 

to plant, production of siderophores. Siderophores are 

low molecular weight compounds, secreted by 

microorganism for solubilization, transport and intake 

of ferric ions from soil (Loper & Buyer, 1991). 

Bacterial strains producing siderophores are both 

competitors towards others microorganisms, due to 

specific sequestration of a limited resource, soluble 

ferric ions (Buysens et al., 1996) and biostimulants of 

plant growth, due to promotion of iron acquisition 

(Colombo et al., 2013). From our tested bacterial 

isolates, six strains (B. aryabhattai KF101*, B. subtilis 

subsp. inaquosorum SZF101B2, B. subtilis subsp. 

inaquosorum SZX102A*, B. subtilis subsp. 

inaquosorum SZX102A*, B. licheniformis SZE102A, 

W. paramesenteroides LC101B*) were able to produce 

siderophores. The average values of yellow spot 

diameter produced on CAS agar are illustrated in figure 

3. 
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Fig. 3. The quantity of siderophores produced by the tested bacteria strains 

 

We tested the compatibility with lactic acid bacteria. One of the tested strain, B. licheniformis SZE102 A proved to 

be compatible with 14 of the lactic acid bacteria strain tested – Table 2. 

Table 2. 

 Compatibility of B. licheniformis SZE 102A strain with lactic acid bacteria strain 

Lactic acid bacteria strains B. licheniformis SZE 102A 

Lactobacillus pentosus C11 + 

 Lactobacillus plantarum subsp. A5 + 

 Lactobacillus pentosus A7 + 

 Enterococcus fecalis B3 + 

 Lactobacillus pentosus C10 + 

Lactobacillus pentosus C2 + 

Lactobacillus plantarum A1 - 

Lactobacillus pentosus C15 - 

Weissella paramesenteroides Luc 2 + 

Pediococcus pentosaceus Luc 1 - 

 Enterococcus faecalis Szen 1 + 

Leuconostoc lactis N19 - 

Lactobacillus plantarum C5 - 

 Enterococcus faecalis N21 + 

Lactobacillus paracases N16 - 

Lactobacillus pentosus N3 - 

Lactobacillus plantarum C6 + 

Lactobacillus acidophilus H9 + 

Pediococcus parvulus H17 - 

Lactobacillus buhneri H1 - 

Lactobacillus brevis H15 - 

 Weissella paramesenteroides Szen ana 2 + 

Pediococcus pentosaceus Luc ana2 + 

 Lactobacillus plantarum subsp. Szen 1 ana - 

Pediococcus pentosaceus Luc ana 1 + 

This bacterial strain B. licheniformis SZE102  

A was also the most active against Fusarium 

graminearum. These mycotoxigenic fungi represent the 

major health hazard on both agricultural applications 

envisaged by our bacterial inoculant selection, 

treatment of plant residues covering the soil on 

conservative farming systems and grass bale silage. 

Overwintering and perithecia development / formation 

of F. graminearum / Gibberella zeae is promoted by 

plant residues (Dill-Macky & Jones, 2000, Beyer et al., 

2006, Pereyra & Dill-Macky, 2008) and plant residues 

treatments with antagonists could reduce perithecia 

formation and spore release (Sicuia et al., 2012b). 

Also, F. graminearum mycotoxins represent a major 

hazard for grass silage, especially when aerobic 

conditions occur (Eckard et al., 2011, Alonso et al., 

2013). An antagonistic strain, able to survive on 

anaerobic conditions and very competitive on aerobic 

conditions, like B. licheniformis SZE102 A could 

prevent the development of mycotoxigenic fusaria and 

mycotoxins production. Being considered a strain with 
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potential, B. licheniformis SZE102 A was deposited for 

patent purposes and patented. This strain demonstrates 

ability to grown well on liquid minimal media with 

biomass as sole source of carbon and energy. On the 

liquid BHM media containing grass, after 48 hours, 

reached a reaches a value of 6.0 x 10
7
 cfu/ml, and in 

the case of liquid BHM medium containing alfalfa 

reached a value of 8.06 x 10
7
 cfu/ml after 48 hours. 

 
CONCLUSIONS: 

Several bacterial isolates able to growth on minimal 

media wherein the sole carbon and energy sources is 

represented by the components usually found on plant 

cell wall / lignocellulose material, cellulose, xylan, 

phytate, were selected. 

These bacterial isolated were identified by 

polyphasic taxonomy and tested for their in vitro 

antagonism toward fungal plant pathogen. The strain 

KF101*, belonging to Bacillus aryabhattai species, 

bacteria known mainly for their plant growth 

promoting activity, was demonstrated to be antagonist 

also toward plant pathogens, with an inhibitory effect 

of 100% to Phytophthora sojae. 

A lactic acid bacteria strain, LC101B*, identified as 

Weissella paramesenteroides, shown an inhibitory 

effect of 100% toward Verticillium dahliae, Botrytis 

aclada (B. alli) and Sclerotinia sclerotiorum. 

On CAS agar six of the tested strains were proved 

to produce siderophores, lactic acid bacteria strain, W. 

paramesenteroides LC101B*, being the most active. 

The strain SZE102 A, identified as B. 

licheniformis, is a powerful antagonist toward 

Fusarium graminearum, a mycotoxigenic fungal 

pathogen, which generate health hazard on both 

conservation farming systems and wrapped bale silage. 

This strain is compatible with lactic acid bacteria and 

have potential for application as inoculant of plant 

residues covering the soil on conservation agricultural 

system and for grass silage. 
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